State selection in the noisy stabilized Kuramoto-Sivashinsky equation.
نویسندگان
چکیده
In this work, we study the one-dimensional stabilized Kuramoto Sivashinsky equation with additive uncorrelated stochastic noise. The Eckhaus stable band of the deterministic equation collapses to a narrow region near the center of the band. This is consistent with the behavior of the phase diffusion constants of these states. Some connections to the phenomenon of state selection in driven out of equilibrium systems are made.
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملNoise induced state transitions, intermittency, and universality in the noisy Kuramoto-Sivashinksy equation.
Consider the effect of pure additive noise on the long-time dynamics of the noisy Kuramoto-Sivashinsky (KS) equation close to the instability onset. When the noise acts only on the first stable mode (highly degenerate), the KS solution undergoes several state transitions, including critical on-off intermittency and stabilized states, as the noise strength increases. Similar results are obtained...
متن کاملNumerical analysis of the noisy Kuramoto-Sivashinsky equation in 211 dimensions
The nondeterministic Kuramoto-Sivashinsky ~KS! equation is solved numerically in 211 dimensions. The simulations reveal the presence of early and late scaling regimes. The initial-time values for the growth exponent b, the roughness exponent a, and the dynamic exponent z are found to be 0.22–0.25, 0.75–0.80, and 3.0–4.0, respectively. For long times, the scaling exponents are notably less than ...
متن کاملStabilized Kuramoto-Sivashinsky equation: a useful model for secondary instabilities and related dynamics of experimental one-dimensional cellular flows.
We report numerical simulations of one-dimensional cellular solutions of the stabilized Kuramoto-Sivashinsky equation. This equation offers a range of generic behavior in pattern-forming instabilities of moving interfaces, such as a host of secondary instabilities or transition toward disorder. We compare some of these collective behaviors to those observed in experiments. In particular, destab...
متن کاملKardar-Parisi-Zhang asymptotics for the two-dimensional noisy Kuramoto-Sivashinsky equation.
We study numerically the Kuramoto-Sivashinsky equation forced by external white noise in two space dimensions, that is a generic model for, e.g., surface kinetic roughening in the presence of morphological instabilities. Large scale simulations using a pseudospectral numerical scheme allow us to retrieve Kardar-Parisi-Zhang (KPZ) scaling as the asymptotic state of the system, as in the one-dime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 81 6 Pt 2 شماره
صفحات -
تاریخ انتشار 2010